Physics-based Models for Aeroservoelasticity Prediction and Control, Phase I

Completed Technology Project (2016 - 2016)

Project Introduction

Clear Science Corp. proposes to develop and demonstrate computational fluid dynamics (CFD)-based, reduced-order aeroservoelasticity modeling and simulation technology for fast and accurate predictions of nonlinear flight dynamics, enabling real-time, piloted and unpiloted flight simulations and providing a tool to design flight controllers for highly flexible, lightweight aircraft. Physics-based, reduced-order models (ROMs) will be developed and demonstrated with data from CFD models of the X-56, an experimental aircraft that NASA and the U. S. Air Force are using to test systems for flutter suppression and gust-load alleviation. Extended range and low fuel consumption through lightweight materials and large wing spans (high lift-todrag ratios) are the drivers in next-generation aircraft like the X-56, but these attributes create challenges in maintaining flight safety, ride quality, and longterm structural durability. The development of flight controllers that can actively manage aeroservoelastic effects (body-freedom flutter, control reversal, gust loading) without compromising safety and aerodynamic performance is a key objective of both the X-56 Program and the proposed project. Through the proposed technology, nonlinear, aeroservoelastic ROMs can be coupled to other components of a flight simulator (six-degrees-offreedom flight mechanics models and control software) to improve the fidelity of simulations that support controller design for a wide range of operating conditions.

Primary U.S. Work Locations and Key Partners

Physics-based Models for Aeroservoelasticity Prediction and Control, Phase I

Table of Contents

Primary U.S. Work Locations and Key Partners 1 Project Transitions 2 Images 2 Organizational Responsibility 2 Project Management 2 Technology Maturity (TRL) 2 Technology Areas 3	Project Introduction	1
Project Transitions 2 Images 2 Organizational Responsibility 2 Project Management 2 Technology Maturity (TRL) 2 Technology Areas 3	Primary U.S. Work Locations	
Images2Organizational Responsibility2Project Management2Technology Maturity (TRL)2Technology Areas3	and Key Partners	1
Organizational Responsibility 2 Project Management 2 Technology Maturity (TRL) 2 Technology Areas 3	Project Transitions	2
Project Management 2 Technology Maturity (TRL) 2 Technology Areas 3	Images	2
Technology Maturity (TRL) 2 Technology Areas 3	Organizational Responsibility	2
Technology Areas 3	Project Management	2
5,	Technology Maturity (TRL)	2
Tanada Dankinakiana	Technology Areas	3
Target Destinations 3	Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Physics-based Models for Aeroservoelasticity Prediction and Control, Phase I

Completed Technology Project (2016 - 2016)

Organizations Performing Work	Role	Туре	Location
Clear Science Corporation	Lead Organization	Industry	Harford, New York
• Armstrong Flight Research Center(AFRC)	Supporting Organization	NASA Center	Edwards, California

Primary U.S. Work Locations	
California	New York

Project Transitions

0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139669)

Images

Briefing Chart Image
Physics-based Models for
Aeroservoelasticity Prediction and
Control, Phase I
(https://techport.nasa.gov/imag
e/127241)

Final Summary Chart Image
Physics-based Models for
Aeroservoelasticity Prediction and
Control, Phase I Project Image
(https://techport.nasa.gov/imag
e/134653)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Clear Science Corporation

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Henry A Carlson

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Physics-based Models for Aeroservoelasticity Prediction and Control, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX11 Software, Modeling, Simulation, and Information Processing
 - □ TX11.1 Software
 Development,
 Engineering, and Integrity
 □ TX11.1.7 Frameworks,
 Languages, Tools, and
 Standards

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

